extremal tetracyclic graphs with respect to the first and second zagreb indices
نویسندگان
چکیده
the first zagreb index, $m_1(g)$, and second zagreb index, $m_2(g)$, of the graph $g$ is defined as $m_{1}(g)=sum_{vin v(g)}d^{2}(v)$ and $m_{2}(g)=sum_{e=uvin e(g)}d(u)d(v),$ where $d(u)$ denotes the degree of vertex $u$. in this paper, the firstand second maximum values of the first and second zagreb indicesin the class of all $n-$vertex tetracyclic graphs are presented.
منابع مشابه
First and Second Zagreb Eccentricity Indices of Thorny Graphs
The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index (E1(H)) is defined to be the summation of squares of the eccentricity of vertices, i.e., E1(H) = ∑u∈V(H) Symmetry 2016, 9, 7; doi: 10.3390/sym9010007 www.mdpi.com/journal/symmetry Article First and Second Zagreb Eccentricity Indices of Thorny Gra...
متن کاملThe First and Second Zagreb Indices, First and Second Zagreb Polynomials of HAC5C6C7[p,q] and HAC5C7[p,q] Nanotubes
Topological indices are numerical parameters of a molecular graph G which characterize its topology. On the other hands, computing the connectivity indices of molecular graphs is an important branch in chemical graph theory. Therefore, we compute First Zagreb index Zg <span style="font-family: TimesNewRomanPS-Italic...
متن کاملFirst and second extremal bipartite graphs with respect to PI index
The Padmakar–Ivan (PI) index of a graph G is defined as the sum of terms [mu(e) + mv(e)] over all edges of G, where e is an edge, connecting the vertices u and v, wheremu(e) is the number of edges of G lying closer to the vertex u than to the vertex v, and where mv(e) is defined analogously. The extremal values of the PI index are determined in the class of connected bipartite graphs with a giv...
متن کاملTrees, Unicyclic, and Bicyclic Graphs Extremal with Respect to Multiplicative Sum Zagreb Index∗
For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M1(G) = ∑ v∈V (G) dG(v) 2 where dG(v) is the degree of vertex v in G. The alternative expression for M1(G) is ∑ uv∈E(G)(dG(u)+dG(v)). Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical invariant ∏∗ 1(G) = ∏ uv∈E(G)(dG(u) + dG(v)) as the multiplicative version of ...
متن کاملThe First and Second Zagreb Indices of Generalized Complementary Prisms
The first and second zagreb indices of a graph G are defined as M1(G) = ∑ uv∈E(G) [deg(u) + deg(v)] (or equivalently ∑ u∈V (G) [deg(u)2] and M2(G) = ∑ uv∈E(G) [deg(u)deg(v)] respectively. In this paper, we have obtained the first and second zagreb indices of the generalized complementary prisms Gm+n,Gm,n,G m,m and Gm,m. MSC: 05C15, 05C38.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transactions on combinatoricsناشر: university of isfahan
ISSN 2251-8657
دوره
شماره Articles in Press 2016
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023